Modal Decomposition Applied to Heat Conduction

B. F. Feeny ${ }^{1}$, F. de Monte ${ }^{2}$, J. V. Beck ${ }^{1}$, and N. T. Wright ${ }^{1}$
${ }^{1}$ Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
${ }^{2}$ Department of Mechanical Engineering, University of L'Aquila, L'Aquila, Italy
Email: feeny@egr.msu.edu, demonte@msu.edu, jamesverebeck@comcast.net, ntwright@msu.edu

1. Introduction

This paper presents the state-variable modal decomposition of transient temperature ensemble data of into modal components to estimate time constants and characteristic shapes of a heated rod. The equation for heat conduction in a one-dimensional continuum is

$$
\begin{equation*}
\frac{\partial y}{\partial t}=\alpha \frac{\partial^{2} y}{\partial x^{2}} \tag{1}
\end{equation*}
$$

where $y(x, t)$ is temperature, t is time, x is the spatial coordinate, and α is a constant (thermal diffusivity), with initial conditions and boundary conditions. Solution by separation of variables, such that $y(x, t)=Y(x) q(t)$, leads to a differential eigenvalue problem, with eigenfunctions $Y_{i}(x)$ that go with $q_{i}(t)=e^{-\lambda_{i} t}$, where the λ_{i} are associated with eigenvalues.

If discretized, for example by finite elements, equation (1) is approximated by a system of first-order ordinary differential equations $\mathbf{A} \dot{\mathbf{y}}=\mathbf{B y}$, where \mathbf{y} is an M-dimensional vector of temperatures associated with discrete points on the continuum, and \mathbf{A} and \mathbf{B} are $M \times M$ matrices. The elements of \mathbf{y} are state variables. Seeking solutions $\mathbf{y}(t)=\exp (-\lambda t) \mathbf{u}$, and inserting into $\mathbf{A} \dot{\mathbf{y}}=\mathbf{B y}$, leads to the eigenvalue problem $-\hat{\lambda} \mathbf{A u}=\mathbf{B u}$, or, in matrix form

$$
\begin{equation*}
-\mathbf{A} \mathbf{U} \underline{\Lambda}=\mathbf{B U} \tag{2}
\end{equation*}
$$

where U's columns are eigenvectors \mathbf{u}_{i}, and diagonal $\underline{\Lambda}$ has values $\hat{\lambda}_{i}$, for $i=1, \ldots, M$. If the discretization is faithful, the vectors \mathbf{u}_{i} and values $\hat{\lambda}_{i}$ approximate discretizations of eigenfunctions $Y_{i}(x)$ and continuous-system exponents λ_{i}, for the lower values of i.

If the $\mathbf{y}(t)$ values are sampled from an experiment, at times $t=0, \Delta t, 2 \Delta t, \ldots,(N-1) \Delta_{t}$, then an $M \times N$ measurement ensemble matrix \mathbf{Y} can be formed such that the rows are time histories of the measured states. The ensemble of time derivatives can be estimated as $\mathbf{V}=\mathbf{V D}^{T}$, using an $(N-2 h) \times N$ matrix \mathbf{D} of centered finite differences of span h. Thus \mathbf{V} is $n \times(N-2 h)$. The first and last h columns of \mathbf{Y} are dropped. Then we form a correlation matrix $\mathbf{R}=\mathbf{Y} \mathbf{Y}^{T} /(N-2 h)$ and a nonsymmetric matrix $\mathbf{N}=\mathbf{Y V}^{T} /(N-2 h)$. The state-variable modal decomposition eigenvalue problem is

$$
\begin{equation*}
\mathbf{R} \underline{\Psi} \underline{\Lambda}=\mathbf{N} \underline{\Psi} . \tag{3}
\end{equation*}
$$

For multi-modal free responses of linear systems, the eigenvalues from equation (3) approximate the eigenvalues equation (2), and $\mathbf{U}=\underline{\Psi}^{-T}$ [1]. This decomposition method has been applied to vibration systems, for which eigenvalues are generally complex, and contain information about frequency and decay rate [1].

In this paper, we present the application of this method to the simulated heat conduction in a bar to extract its characteristic mode shapes and exponential rates.

2. Example

Consider the 1-D transient problem denoted by X12B10T0 (notation of Beck et al. [2]) of a bar with a suddenly applied temperature T_{0} at one end, and insulated at the other. The governing equation (1) has the boundary conditions $y(0, t)=T_{0}$ and $[\partial y(x, t) / \partial x]_{x=L}=0$, with the initial conditions $y(x, 0)=0$. The solution by separation of variables is

$$
\begin{equation*}
y(x, t)=T_{0}-2 T_{0} \sum_{m=0}^{\infty} \frac{\sin \beta_{m} x}{\beta_{m} L} e^{-\beta_{m}^{2} \alpha t}, \tag{4}
\end{equation*}
$$

where $\beta_{m}=(m-1 / 2) \pi / L$, for $m=1,2, \ldots$, and $\beta_{m}^{2} \alpha=\lambda_{m}$.
For the numerical example, we used $L=1 \mathrm{~m}, \alpha=1 \mathrm{~m}^{2} / \mathrm{s}$, and $T_{0}=1$ degree. We sensed the rod at $M=16$ locations $x=0, \Delta x, 2 \Delta x, \ldots, L$, where $\Delta x=L /(M-1)$. We set the time sampling interval Δt to be one tenth (arbitrary criterion) of the fastest desired time constant, $\tau_{m}=1 / \lambda_{m}$. We aimed for roughly five time constants, and thus set $\Delta t=\tau_{5} / 10=0.0005 \mathrm{~s}$ (or 2 kHz). We also set the total number of samples $N=809$ (for a time of 0.4053 seconds) to be one fourth (arbitrary choice) of the settling time of the slowest time constant. We evaluated the separation of variables solution (4) truncated at $m=16$ terms to generate an ensemble matrix \mathbf{Y} with elements $Y_{i j}=y\left(x_{i}, t_{j}\right)$, for $i=1, \ldots, M$ and $j=1, \ldots, N$.

The decomposition eigenvalue problem was constructed as described above, with difference step $h=2$. The true values of $\lambda_{i}, i=1, \ldots, 9$, were $2.4674,22.2066,61.6850,120.9027$, $199.8595,298.5555,416.9908,555.1652$, and $713.0789 \mathrm{~s}^{-1}$. The extracted values were 2.4674 , $22.2084,61.7241,121.1994,201.3453,300.8649,438.2915,585.2685$, and $707.0017 \mathrm{~s}^{-1}$. Further extractions were not accurate. The first four estimated mode shapes, shown in Figure 1 , resemble the theoretical sinusoids. Modal coordinates, or separated time-dependent variables, can be obtained from the extracted modes, as $\mathbf{Q}=\mathbf{U}^{-1} \mathbf{Y}$. The lowest modal coordinates are plotted in Figure 2, demonstrating the characteristic exponential decays. When random noise was applied, uniformly distributed between $\pm 2^{-9}$, two mode shapes were reasonably estimated. There was also an extracted mode of $\lambda_{0}=0$, with a vector discretization of $Y_{0}(x)=1$, and $q_{0}(t)=1$ representing the eventual steady state.

3. Acknowledgement

This material is related to work supported by the National Science Foundation under Grant No. CMMI-0727838. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.

4. References

1. Feeny, B. F., and Farooq, U., 2008. "A nonsymmetric state-variable decomposition for modal analysis". Journal of Sound and Vibration, 310(4-5), pp. 792-800.
2. Beck, J. V., Cole, K. D., Haji-Sheikh, A., and Litkouhi, B., 1992. Heat Conduction Using Greens Functions. Hemisphere Press, Washington.

Figure 1: Extracted modal vectors approximate the modal functions $Y_{i}(x)$.

Figure 2: Transient responses of six separated variables as extracted from the data.

