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1. Introduction

This paper presents the state-variable modal decomposition of transient temperature
ensemble data of into modal components to estimate time constants and characteristic shapes
of a heated rod. The equation for heat conduction in a one-dimensional continuum is

∂y

∂t
= α

∂2y

∂x2
, (1)

where y(x, t) is temperature, t is time, x is the spatial coordinate, and α is a constant
(thermal diffusivity), with initial conditions and boundary conditions. Solution by separation
of variables, such that y(x, t) = Y (x)q(t), leads to a differential eigenvalue problem, with
eigenfunctions Yi(x) that go with qi(t) = e−λit, where the λi are associated with eigenvalues.

If discretized, for example by finite elements, equation (1) is approximated by a system
of first-order ordinary differential equations Aẏ = By, where y is an M -dimensional vector
of temperatures associated with discrete points on the continuum, and A and B are M ×M
matrices. The elements of y are state variables. Seeking solutions y(t) = exp(−λt)u, and

inserting into Aẏ = By, leads to the eigenvalue problem −λ̂Au = Bu, or, in matrix form

−AUΛ = BU, (2)

where U’s columns are eigenvectors ui, and diagonal Λ has values λ̂i, for i = 1, . . . ,M .
If the discretization is faithful, the vectors ui and values λ̂i approximate discretizations of
eigenfunctions Yi(x) and continuous-system exponents λi, for the lower values of i.

If the y(t) values are sampled from an experiment, at times t = 0,∆t, 2∆t, . . . , (N−1)∆t,
then an M ×N measurement ensemble matrix Y can be formed such that the rows are time
histories of the measured states. The ensemble of time derivatives can be estimated as
V = VDT , using an (N − 2h) ×N matrix D of centered finite differences of span h. Thus
V is n × (N − 2h). The first and last h columns of Y are dropped. Then we form a
correlation matrix R = YYT/(N − 2h) and a nonsymmetric matrix N = YVT/(N − 2h).
The state-variable modal decomposition eigenvalue problem is

RΨΛ = NΨ. (3)

For multi-modal free responses of linear systems, the eigenvalues from equation (3) approx-
imate the eigenvalues equation (2), and U = Ψ−T [1]. This decomposition method has
been applied to vibration systems, for which eigenvalues are generally complex, and contain
information about frequency and decay rate [1].

In this paper, we present the application of this method to the simulated heat conduction
in a bar to extract its characteristic mode shapes and exponential rates.
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2. Example

Consider the 1-D transient problem denoted by X12B10T0 (notation of Beck et al. [2])
of a bar with a suddenly applied temperature T0 at one end, and insulated at the other. The
governing equation (1) has the boundary conditions y(0, t) = T0 and [∂y(x, t)/∂x]x=L = 0,
with the initial conditions y(x, 0) = 0. The solution by separation of variables is

y(x, t) = T0 − 2T0

∞∑
m=0

sin βmx

βmL
e−β

2
mαt, (4)

where βm = (m− 1/2)π/L, for m = 1, 2, . . . , and β2
mα = λm.

For the numerical example, we used L = 1 m, α = 1 m2/s, and T0 = 1 degree. We sensed
the rod at M = 16 locations x = 0,∆x, 2∆x, . . . , L, where ∆x = L/(M−1). We set the time
sampling interval ∆t to be one tenth (arbitrary criterion) of the fastest desired time constant,
τm = 1/λm. We aimed for roughly five time constants, and thus set ∆t = τ5/10 = 0.0005 s
(or 2 kHz). We also set the total number of samples N = 809 (for a time of 0.4053 seconds)
to be one fourth (arbitrary choice) of the settling time of the slowest time constant. We
evaluated the separation of variables solution (4) truncated at m = 16 terms to generate an
ensemble matrix Y with elements Yij = y(xi, tj), for i = 1, . . . ,M and j = 1, . . . , N .

The decomposition eigenvalue problem was constructed as described above, with differ-
ence step h = 2. The true values of λi, i = 1, . . . , 9, were 2.4674, 22.2066, 61.6850, 120.9027,
199.8595, 298.5555, 416.9908, 555.1652, and 713.0789 s−1. The extracted values were 2.4674,
22.2084, 61.7241, 121.1994, 201.3453, 300.8649, 438.2915, 585.2685, and 707.0017 s−1. Fur-
ther extractions were not accurate. The first four estimated mode shapes, shown in Figure
1, resemble the theoretical sinusoids. Modal coordinates, or separated time-dependent vari-
ables, can be obtained from the extracted modes, as Q = U−1Y. The lowest modal coor-
dinates are plotted in Figure 2, demonstrating the characteristic exponential decays. When
random noise was applied, uniformly distributed between ±2−9, two mode shapes were rea-
sonably estimated. There was also an extracted mode of λ0 = 0, with a vector discretization
of Y0(x) = 1, and q0(t) = 1 representing the eventual steady state.

3. Acknowledgement

This material is related to work supported by the National Science Foundation under
Grant No. CMMI-0727838. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author and do not necessarily reflect the views of
the National Science Foundation.

4. References

1. Feeny, B. F., and Farooq, U., 2008. “A nonsymmetric state-variable decomposition for
modal analysis”. Journal of Sound and Vibration, 310(4-5), pp. 792–800.

2. Beck, J. V., Cole, K. D., Haji-Sheikh, A., and Litkouhi, B., 1992. Heat Conduction
Using Greens Functions. Hemisphere Press, Washington.

2



0 0.5 1
0

0.5

1

1.5
mode 1

Y
(x

)

0 0.5 1
!0.5

0

0.5
mode 2

0 0.5 1
!0.4

!0.2

0

0.2

0.4
mode 3

0 0.5 1
!0.2

!0.1

0

0.1

0.2
mode 4

Y
(x

)

x

0 0.5 1
!0.4

!0.2

0

0.2

0.4
mode 5

x

0 0.5 1
!0.4

!0.2

0

0.2

0.4
mode 6

x

Figure 1: Extracted modal vectors approximate the modal functions Yi(x).
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Figure 2: Transient responses of six separated variables as extracted from the data.
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